Details

RF Circuits for 5G Applications


RF Circuits for 5G Applications

Designing with mmWave Circuitry
1. Aufl.

von: Sangeeta Singh, Rajeev Kumar Arya, B. C. Sahana, Ajay Kumar Vyas

150,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.03.2023
ISBN/EAN: 9781119792925
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>RF CIRCUITS FOR 5G APPLICATIONS</b> <p><b>This book addresses FinFET-based analog IC designing for fifth generation (5G) communication networks and highlights the latest advances, problems, and challenges while presenting the latest research results in the field of mmwave integrated circuits designing. </b> <p>The wireless communication sector is experiencing exponential expansion, particularly in the areas of mobile data and the 5G mobile network, creating fresh market possibilities for designing the integrated circuits (ICs) needed in the industry<b>.</b> Drawing from scientific literature and practical realization, this book explores FinFET-based analog IC designing for 5G communication networks and considers the latest breakthroughs and obstacles. It also presents the recent research trends and future roadmaps for the 5G communication circuits. <p><i>RF Circuits for 5G Applications</i> includes design guidelines to be considered when designing these circuits and detrimental scaling effects of the same. In addition, to enhance the usability of this book, the editors have included real-time problems in RFIC designing and case studies from experimental results, as well as clearly demarcated design guidelines for the 5G communication ICs designing. <p><b>Audience</b> <p>The primary target audience includes researchers, postgraduate students, and industry professionals pursuing specializations in RF engineering, electronics engineering, electrical engineering, information, and communication technology.
<p>Preface xv</p> <p><b>Part I: 5G Communication 1</b></p> <p><b>1 Needs and Challenges of the 5 <sup>th</sup> Generation Communication Network 3<br /> </b><i>Anamika Raj, Gaurav Kumar and Sangeeta Singh</i></p> <p>1.1 Introduction 3</p> <p>1.1.1 What is 5G and Do We Need 5G? 5</p> <p>1.1.2 A Brief History of Gs 6</p> <p>1.2 mmWave Spectrum, Challenges, and Opportunities 8</p> <p>1.3 Framework Level Requirements for mmWave Wireless Links 11</p> <p>1.4 Circuit Aspects 12</p> <p>1.5 Outline of the Book 14</p> <p>Acknowledgement 15</p> <p>References 15</p> <p><b>2 5G Circuits from Requirements to System Models and Analysis 19<br /> </b><i>Vipin Sharma, Rachit Patel and Krishna Pandey</i></p> <p>2.1 RF Requirements Governed by 5G System Targets 19</p> <p>2.2 Radio Spectrum and Standardization 20</p> <p>2.3 System Scalability 21</p> <p>2.4 Communication System Model for RF System Analysis 22</p> <p>2.5 System-Level RF Performance Model 23</p> <p>2.5.1 Transmitter, Receiver, Antenna Array and Transceiver Architectures for RF and Hybrid Beamforming 24</p> <p>2.6 Radio Propagation and Link Budget 24</p> <p>2.6.1 Radio Propagation Model 24</p> <p>2.6.2 Link Budgeting 25</p> <p>2.7 Multiuser Multibeam Analysis 26</p> <p>2.8 Conclusion 28</p> <p>Acknowledgement 29</p> <p>References 29</p> <p><b>3 Millimetre-Wave Beam-Space MIMO System for 5G Applications 31<br /> </b><i>G. Indumathi, J. Roscia Jeya Shiney and Shashi Kant Dargar</i></p> <p>3.1 Introduction 32</p> <p>3.2 Beam-Space Massive MIMO System 34</p> <p>3.2.1 System Model 36</p> <p>3.2.2 Saleh-Valenzuela Channel Model 37</p> <p>3.3 Array Response Vector 37</p> <p>3.3.1 mmWave Beam-Space Massive (mWBSM)-MIMO System 38</p> <p>3.4 Discrete Lens Antenna Array 39</p> <p>3.5 Beam Selection Algorithm 42</p> <p>3.6 Mean Sum Assignment-Based Beam User Association 45</p> <p>3.6.1 Performance Evaluation 46</p> <p>3.7 Conclusion 49</p> <p>References 49</p> <p><b>Part II: Oscillator & Amplifier 53</b></p> <p><b>4 Gain-Bandwidth Enhancement Techniques for mmWave Fully-Integrated Amplifiers 55<br /> </b><i>Shalu C., Shakti Sindhu and Amitesh Kumar</i></p> <p>4.1 RLC Tank 56</p> <p>4.1.1 RC Low-Pass (LP) Filter 56</p> <p>4.1.2 RLC Band-Pass (BP) Filter 56</p> <p>4.2 Coupled Resonators 57</p> <p>4.2.1 Bode-Fano (B-F) Limit 57</p> <p>4.2.2 Capacitively Coupled Resonators 59</p> <p>4.2.3 Inductively Coupled Resonators 60</p> <p>4.2.4 Magnetically Coupled Resonators 60</p> <p>4.2.5 Magnetically and Capacitive Coupled Resonator 61</p> <p>4.2.6 Coupled Resonators Comparison 62</p> <p>4.3 Resonators Based on the Transformers 63</p> <p>4.3.1 On the Parasitic Interwinding Capacitance 63</p> <p>4.3.2 Effect of Unbalanced Capacitive Terminations 64</p> <p>4.3.3 Frequency Response Equalization 65</p> <p>4.3.4 On the Parasitic Magnetic Coupling in Multistage Amplifiers 66</p> <p>4.3.5 Extension to Impedance Transformation 67</p> <p>4.3.6 On the kQ Product 67</p> <p>4.3.7 Transformer-Based Power Dividers (PDs) 68</p> <p>4.3.8 Transformer-Based Power Combiners (PCs) 69</p> <p>4.4 Conclusion 69</p> <p>Acknowledgments 70</p> <p>References 70</p> <p><b>5 Low-Noise Amplifiers 73<br /> </b><i>Jyoti Priya, Sangeeta Singh and Bambam Kumar</i></p> <p>5.1 Introduction 73</p> <p>5.2 Basics of RFIC 75</p> <p>5.2.1 Voltage Gain in dB 75</p> <p>5.2.2 Power Gain in dB 75</p> <p>5.2.3 Issues in RF Design 75</p> <p>5.3 Structure of MOSFET 81</p> <p>5.4 Bandwidth Estimation Techniques 84</p> <p>5.5 Noise 88</p> <p>5.5.1 Noise in MOSFET 89</p> <p>5.6 Different Topologies of LNA 92</p> <p>Conclusion 103</p> <p>Acknowledgement 103</p> <p>References 104</p> <p><b>6 Mixer Design 107<br /> </b><i>Brajendra Singh Sengar and Amitesh Kumar</i></p> <p>6.1 Introduction 107</p> <p>6.2 Properties 109</p> <p>6.3 Diode Mixer 114</p> <p>6.4 Transistor Mixer 116</p> <p>6.5 Conclusion 119</p> <p>Acknowledgement 119</p> <p>References 119</p> <p><b>7 RF LC VCOs Designing 123<br /> </b><i>M. Sankush Krishna, Madhuraj Kumar, Neelesh Pratap Singh and Anjan Kumar</i></p> <p>7.1 Introduction 124</p> <p>7.1.1 Basic VCO Models 124</p> <p>7.1.2 Phase Noise 125</p> <p>7.1.3 Flicker Noise 126</p> <p>7.1.4 Distributed Oscillators 128</p> <p>7.2 Tuning Extension Techniques 129</p> <p>7.2.1 Varactor 129</p> <p>7.2.2 Switched Capacitors 130</p> <p>7.2.3 Switched Inductors 131</p> <p>7.2.4 Switched TLs 132</p> <p>7.2.5 4<sup>th</sup> Order Tanks and Other Techniques 132</p> <p>7.3 Conclusion 133</p> <p>Acknowledgement 133</p> <p>References 134</p> <p><b>8 RF Power Amplifiers 137<br /> </b><i>Anchal Tyagi, Rachit Patel and Krishna Pandey</i></p> <p>8.1 Specification 137</p> <p>8.1.1 Efficiency 138</p> <p>8.1.2 Generic Amplifier Classes 138</p> <p>8.1.3 Heating 139</p> <p>8.1.4 Linearity 139</p> <p>8.1.5 Ruggedness 140</p> <p>8.2 Bipolar PA Design 140</p> <p>8.3 CMOS Power Amplifier Design 142</p> <p>8.3.1 Performance Parameters 143</p> <p>8.3.1.1 Linearity 143</p> <p>8.3.1.2 Gain 143</p> <p>8.3.1.3 Efficiency 144</p> <p>8.3.1.4 Output Power 144</p> <p>8.3.1.5 Power Consumption 144</p> <p>8.3.2 Drawbacks of CMOS Power Amplifier 144</p> <p>8.3.3 Design of CMOS Power Amplifier 145</p> <p>8.3.3.1 Common Cascode PA Design 145</p> <p>8.3.3.2 Self-Bias Cascode PA Design 146</p> <p>8.3.3.3 Differential Cascode PA Design 147</p> <p>8.3.3.4 Power Combining PA Design 147</p> <p>8.4 Linearization Principles: Predistortion Technique, Phase-Correcting Feedback, Envelope Elimination and Restoration (EER), Cartesian Feedback 148</p> <p>8.4.1 Predistortion Linearization Technique 148</p> <p>8.4.2 Phase Correcting Feedback Technique 150</p> <p>8.4.3 Cartesian Feedback Technique 151</p> <p>8.4.4 Envelope Elimination and Restoration Technique 152</p> <p>Acknowledgement 154</p> <p>References 154</p> <p><b>9 RF Oscillators 157<br /> </b><i>Pramila Jakhar and Amitesh Kumar</i></p> <p>9.1 Introduction 157</p> <p>9.2 Specifications 159</p> <p>9.2.1 Frequency and Tuning 159</p> <p>9.2.2 Tuning Constant and Linearity 159</p> <p>9.2.3 Power Dissipation 160</p> <p>9.2.4 Phase to Noise Ratio 160</p> <p>9.2.5 Reciprocal Mixing 160</p> <p>9.2.6 Signal to Noise Degradation of FM Signals Spurious Emission 161</p> <p>9.2.7 Harmonics, I/Q Matching, Technology and Chip Area 161</p> <p>9.3 LC Oscillators 162</p> <p>9.3.1 Frequency, Tuning and Phase Noise Frequency Tuning Phase Noise to Carrier Ratio 163</p> <p>9.3.2 Topologies 164</p> <p>9.3.3 NMOS Only Cross-Coupled Structure 164</p> <p>9.3.4 RC Oscillators 165</p> <p>9.4 Design Examples 167</p> <p>9.4.1 830 MHz Monolithic LC Oscillator Circuit Design Measurements 167</p> <p>9.4.2 A 10 GHz I/Q RC Oscillator with Active Inductors 167</p> <p>9.5 Conclusion 168</p> <p>Acknowledgement 168</p> <p>References 169</p> <p><b>Part III: RF Circuit Applications 171</b></p> <p><b>10 mmWave Highly-Linear Broadband Power Amplifiers 173<br /> </b><i>Shalu C., Shakti Sindhu and Amitesh Kumar</i></p> <p>10.1 Basics of PAs 173</p> <p>10.1.1 Single Transistor Amplifier 173</p> <p>10.1.2 Trade-Offs Among Power Amplifier Design Parameters (P 0 , PAE and Linearity) 174</p> <p>10.1.3 Harmonic Terminations and Switching Amplifiers 175</p> <p>10.1.4 Challenges at Millimeter-Wave 177</p> <p>10.2 Millimeter Wave-Based AB Class PA 177</p> <p>10.2.1 Efficiency at Power Back-Off 178</p> <p>10.2.2 Sources of AM-PM Distortion 178</p> <p>10.2.3 Distortion Cancellation Techniques 179</p> <p>10.2.3.1 Input PMOS Varactors 179</p> <p>10.2.3.2 Complementary N-PMOS Amplifier 180</p> <p>10.2.3.3 Degeneration Inductance 180</p> <p>10.2.3.4 Harmonic Traps 180</p> <p>10.3 Design Example: A Highly Linear Wideband PA in 28 nm CMOS 181</p> <p>10.3.1 Transformer-Based Output Combiner and Inter-Stage Power Divider 182</p> <p>10.3.2 More on the kQ Product 183</p> <p>10.4 Conclusion 185</p> <p>Acknowledgments 185</p> <p>References 186</p> <p><b>11 FinFET Process Technology for RF and Millimeter Wave Applications 189<br /> </b><i>A. Theja, Vikas A., Meena Panchore and Kanchan Cecil</i></p> <p>11.1 Evaluation of FinFET Technology 189</p> <p>11.1.1 Steps of Fabrication and Process Flow of FinFET Technology 191</p> <p>11.1.2 Digital Performance 193</p> <p>11.1.3 Analog/RF Performance 195</p> <p>11.2 Distinct Properties of FinFET 197</p> <p>11.2.1 Performance with Transistor Scaling 198</p> <p>11.2.2 Nonlinear Gate Resistance by Three Dimensional Structure 199</p> <p>11.2.3 Self-Heating Effect in FinFETs 202</p> <p>11.3 Assessment of FinFET Technology for RF/mmWave Applications 203</p> <p>11.3.1 RF Performance 204</p> <p>13.3.1.1 Parasitic Extraction 206</p> <p>11.3.2 Noise Performance 208</p> <p>11.3.3 Noise Matching with Gain at the mmWave Frequency 210</p> <p>11.4 Design Process of FinFET for RF/mmWave Performance Optimization 211</p> <p>11.4.1 Cascaded Chain Design Consideration for Wireless System 212</p> <p>11.4.2 Optimization of Noise Figure with G max for LNA Within Self-Heat Limit 213</p> <p>11.4.3 Gain Per Power Efficiency 215</p> <p>11.4.4 Linearity for Gain and Power Efficiency 217</p> <p>11.4.5 Neutralization for mmWave Applications 219</p> <p>References 220</p> <p><b>12 Pre-Distortion: An Effective Solution for Power Amplifier Linearization 223<br /> </b><i>Gaurav Bhargava and Shubhankar Majumdar</i></p> <p>12.1 Introduction 223</p> <p>12.2 Standard Measures of Nonlinearity of Power Amplifier 224</p> <p>12.2.1 Gain Compression Point (1 dB) 225</p> <p>12.2.2 Harmonic and Intermodulation Distortion (IMD) 225</p> <p>12.2.3 Third-Order Intercept Point (TOI) 227</p> <p>12.2.4 AM/AM and AM/PM Distortion 227</p> <p>12.2.5 Adjacent Channel Power Ratio (ACPR) 228</p> <p>12.2.6 Error Vector Magnitude (EVM) 229</p> <p>12.3 What is Linearization? 230</p> <p>12.3.1 Feed Forward Linearization 230</p> <p>12.3.2 Feedback Linearization 231</p> <p>12.3.3 Pre-Distortion Linearization 231</p> <p>12.4 Example of Analog Pre-Distortion-Based Class EFJ Power Amplifier 234</p> <p>Conclusion and Future Scope 237</p> <p>References 238</p> <p><b>13 Design of Control Circuit for Mitigation of Shadow Effect in Solar Photovoltaic System 241<br /> </b><i>Dhvanit Bhavsar, Shubham Bhatt, Siddhi Vinayak Pandey and Alok Kumar Singh</i></p> <p>13.1 Introduction 242</p> <p>13.2 Proposed Methodology 246</p> <p>13.3 Results and Discussion 260</p> <p>13.4 Conclusion 263</p> <p>Acknowledgement 263</p> <p>References 264</p> <p><b>Part IV: RF Circuit Modeling 267</b></p> <p><b>14 HBT High-Frequency Modeling and Integrated Parameter Extraction 269<br /> </b><i>Ashish Bhatnagar and Rachit Patel</i></p> <p>14.1 HBT High-Frequency Modeling and Integrated Parameter Extraction 269</p> <p>14.2 High-Frequency HBT Modeling 270</p> <p>14.2.1 DC and Small Signal Models 271</p> <p>14.2.2 Linearized T-Model 272</p> <p>14.2.3 Linearized Hybrid π model 272</p> <p>14.3 Integrated Parameters Extraction 275</p> <p>14.3.1 Formulation of Integrated Parameter Extraction 275</p> <p>14.3.2 Optimization of Model 276</p> <p>14.4 Noise Model Validation 276</p> <p>14.5 Parameters Extraction of an HBT Model 276</p> <p>Acknowledgement 277</p> <p>References 277</p> <p><b>15 Non-Linear Microwave Circuit Design Using Multi-Harmonic Load-Pull Simulation Technique 279<br /> </b><i>Veral Agarwal and Rachit Patel</i></p> <p>15.1 Introduction 279</p> <p>15.2 Multi-Harmonic Load-Pull Simulation Using Harmonic Balance 280</p> <p>15.2.1 Formulation of Multi-Harmonic Load-Pull Simulation 280</p> <p>15.2.2 Systematic Design Procedure 281</p> <p>15.3 Application of Multiharmonic Load-Pull Simulation 282</p> <p>15.3.1 Narrowband Power Amplifier Design 282</p> <p>15.3.2 Frequency Doubler Design 285</p> <p>References 287</p> <p><b>16 Microwave RF Designing Concepts and Technology 289<br /> </b><i>Madhu Raj Kumar and Neelesh Pratap Singh</i></p> <p>16.1 Introduction 289</p> <p>16.1.1 Gain 290</p> <p>16.1.2 Noise 290</p> <p>16.1.3 Non Linearity 291</p> <p>16.1.4 Sensitivity 295</p> <p>16.2 Microwave RF Device Technology and Characterization 296</p> <p>16.2.1 Characterization and Modeling 296</p> <p>16.2.2 Modeling 296</p> <p>16.2.3 Cut-Off Frequency 298</p> <p>16.2.4 Maximum Oscillation Frequency 299</p> <p>16.2.5 Input Limited Frequency 301</p> <p>16.2.6 Output Limited Frequency 301</p> <p>16.2.7 Maximum Available Frequency 302</p> <p>16.2.8 Technology Choices 302</p> <p>16.2.9 Double Poly Devices 303</p> <p>16.3 Passive Components 303</p> <p>16.3.1 Resistors 304</p> <p>16.3.2 Capacitors 304</p> <p>16.3.3 Inductors 307</p> <p>Conclusion 309</p> <p>Acknowledgement 309</p> <p>References 309</p> <p>Index 313</p>
<p><b>Sangeeta Singh, PhD, </b>is an assistant professor in the Department of Electronics and Communication Engineering, NIT Patna, India. She has been recognized as an eminent scholar in the field of electronics and computer engineering. She has published many research papers in reputed international journals and conferences, and has edited “CMOS Analog IC Design for 5G and Beyond” (2021). <p><b>Rajeev Kumar Arya, PhD, </b>received his doctorate in Communication Engineering from the Indian Institute of Technology (IIT Roorkee) in 2016. He is an assistant professor in the Department of Electronics & Communication Engineering at the National Institute of Technology, Patna, India. He has published many articles in international journals and conferences and received the <i>Best Paper</i> award at ICCET-2019. <p><b>B.C. Sahana, PhD, </b>is an assistant professor in the Department of Electronics and Communication Engineering, NIT Patna, India. He has supervised PhD, M.Tech, and B.Tech students in the area of signal processing, optimization, soft computing, and swarm intelligence techniques with applications to various engineering design problems, image processing and compression, computer vision, geophysical signal processing, and filter design. He has published more than 20 research publications in journals and conferences. <p><b>Ajay Kumar Vyas, PhD, </b>has more than 16 years of teaching and research experience. He is currently a senior assistant professor at the Adani Institute of Infrastructure Engineering, Ahmedabad, India. He has published several books on digital electronics and research papers in peer-reviewed international journals and conferences, and has edited five books.
<p><b>This book addresses FinFET-based analog IC designing for fifth generation (5G) communication networks and highlights the latest advances, problems, and challenges while presenting the latest research results in the field of mmwave integrated circuits designing. </b> <p>The wireless communication sector is experiencing exponential expansion, particularly in the areas of mobile data and the 5G mobile network, creating fresh market possibilities for designing the integrated circuits (ICs) needed in the industry<b>.</b> Drawing from scientific literature and practical realization, this book explores FinFET-based analog IC designing for 5G communication networks and considers the latest breakthroughs and obstacles. It also presents the recent research trends and future roadmaps for the 5G communication circuits. <p><i>RF Circuits for 5G Applications</i> includes design guidelines to be considered when designing these circuits and detrimental scaling effects of the same. In addition, to enhance the usability of this book, the editors have included real-time problems in RFIC designing and case studies from experimental results, as well as clearly demarcated design guidelines for the 5G communication ICs designing. <p><b>Audience</b> <p>The primary target audience includes researchers, postgraduate students, and industry professionals pursuing specializations in RF engineering, electronics engineering, electrical engineering, information, and communication technology.

Diese Produkte könnten Sie auch interessieren:

Critical Systems Thinking
Critical Systems Thinking
von: Michael C. Jackson
PDF ebook
34,99 €
Circuitos lógicos digitales 4ed
Circuitos lógicos digitales 4ed
von: Javier Vázquez del Real
EPUB ebook
28,99 €