Details

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes


Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes


1. Aufl.

von: Zongyou Yin

318,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 22.10.2021
ISBN/EAN: 9783527831388
Sprache: englisch
Anzahl Seiten: 880

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Atomic and Nano Scale Materials for Advanced Energy Conversion</b> <p><b>Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques</b> <p>In <i>Atomic and Nano Scale Materials for Advanced Energy Conversion,</i> expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. <p>The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. <p>The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. <p>Readers will also benefit from: <ul><li>A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion</li> <li>An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters</li> <li>Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies</li> <li>A thorough analysis of future perspectives and directions in advanced energy conversion technology</li></ul> <p>Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists,<i> Atomic and Nano Scale Materials for Advanced Energy Conversion</i> is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.
<p><b>Volume 1</b></p> <p>1 Introduction 1<br /> Zongyou Yin</p> <p><b>Part I Emerging Nanomaterials for Electrochemical (EC) Energy Conversion </b><b>3</b></p> <p><b>2 2D-Materials-Free Heterostructures for EC Energy Conversion </b><b>5</b><br /> <i>Kamran Dastafkan and Chuan Zhao</i></p> <p>2.1 Heterostructures for Electrochemical Water Splitting 5</p> <p>2.2 Heterostructures for Electrochemical CO<sub>2</sub> Reduction Reaction 24</p> <p>2.3 Heterostructures for Electrochemical N<sub>2</sub> Reduction Reaction 38</p> <p>2.4 Challenges and Future Opportunities 43</p> <p>References 45</p> <p><b>3 2D-Materials-Based Heterostructures for EC Energy Conversion </b><b>53<br /> </b><i>Zhengqing Liu</i></p> <p>3.1 Advances of 2D Materials-Based Heterostructures 53</p> <p>3.2 Water Splitting 54</p> <p>3.3 CO<sub>2</sub> Reduction Reaction (CRR) 103</p> <p>3.4 N<sub>2</sub> Reduction Reaction (NRR) 109</p> <p>3.5 Challenge and Opportunity 117</p> <p>References 118</p> <p><b>4 Superlattices for EC Energy Conversion </b><b>129<br /> </b><i>Hang Yin and Zongyou Yin</i></p> <p>4.1 EC Water Splitting 129</p> <p>4.2 EC CO<sub>2</sub> Reduction Reaction (CRR) 143</p> <p>4.3 Challenge and Opportunity 145</p> <p>References 145</p> <p><b>5 Polymorphic Phase Engineered Structures (PPESs) for EC Energy Conversion </b><b>147<br /> </b><i>Nasir Uddin, Ziyang Lu, and Zongyou Yin</i></p> <p>5.1 Introduction 147</p> <p>5.2 PPES for EC Water Splitting 148</p> <p>5.3 PPES for EC N<sub>2</sub> Reduction Reaction (NRR) 160</p> <p>5.4 Challenge and Opportunity 166</p> <p>References 167</p> <p><b>6 Rare-earth Nanomaterials for EC Energy Conversion </b><b>171<br /> </b><i>Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du</i></p> <p>6.1 Rare Earth Nanomaterials for EC Reactions 171</p> <p>6.2 Challenge and Opportunity 187</p> <p>References 188</p> <p><b>Part II Emerging Nanomaterials for Photochemical (PC) Energy Conversion </b><b>191</b></p> <p><b>7 2D-Materials Free Heterostructures for photochemical Energy Conversion </b><b>193<br /> </b><i>Wei Chen and Guohua Jia</i></p> <p>7.1 2D-Materials Free Heterostructures 193</p> <p>References 222</p> <p><b>8 Van der Waals Heterostructures in Photocatalytic Energy Conversion </b><b>225<br /> </b><i>Bikesh Gupta, Han Li, Julie Tournet, Hark H. Tan, Chennupati Jagadish,</i><i>Shaowen Cao, and Siva K. Karuturi</i></p> <p>8.1 Introduction 225</p> <p>8.2 Fabrication of 2D/2D Heterostructures 226</p> <p>8.3 2D/2D Heterostructures for Photocatalytic Redox Reactions 236</p> <p>8.4 Mixed-Dimensional Heterostructures for Photocatalytic Redox Reaction 249</p> <p>8.5 Challenges and Perspectives 260</p> <p>Acknowledgments 262</p> <p>References 262</p> <p><b>9 Superlattices for PC Energy Conversion </b><b>275<br /> </b><i>Hang Yin and Zongyou Yin</i></p> <p>9.1 PC Water Splitting 275</p> <p>9.2 Challenge and Opportunity 282</p> <p>References 282</p> <p><b>10 Polymorphic Phase Engineered Structures (PPESs) for PC Energy Conversion </b><b>285<br /> </b><i>Nasir Uddin, Ziyang Lu, and Zongyou Yin</i></p> <p>10.1 PPES for PC Water Splitting 285</p> <p>10.2 PPES for PC CO<sub>2</sub> Reduction Reaction (CRR) 294</p> <p>10.3 PPES for PC N<sub>2</sub> Reduction Reaction (NRR) 300</p> <p>10.4 Challenge and Opportunity 303</p> <p>References 304</p> <p><b>11 Rare-earth Nanomaterials for PC Energy Conversion </b><b>309<br /> </b><i>Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du</i></p> <p>11.1 Complex Oxides 309</p> <p>11.2 Ce-Based Photocatalysts 317</p> <p>11.3 Challenge and Opportunity 321</p> <p>References 321</p> <p><b>12 Non-noble Plasmonic Enhancement (NNPE) for PC Energy Conversion </b><b>325<br /> </b><i>Chao Yang and Shaowen Cao</i></p> <p>12.1 Introduction 325</p> <p>12.2 NNPE Water Splitting 326</p> <p>12.3 NNPE CO<sub>2</sub> Reduction Reaction (CRR) 331</p> <p>12.4 NNPE N<sub>2</sub> Reduction Reaction (NRR) 335</p> <p>12.5 Challenge and Opportunity 337</p> <p>References 338</p> <p><b>Part III Emerging Nanomaterials for Photoelectrochemical (PEC) Energy Conversion </b><b>341</b></p> <p><b>13 2D Materials-Free Heterostructures for PEC Energy Conversion </b><b>343<br /> </b><i>Wei Chen and Guohua Jia</i></p> <p>13.1 2D Materials-Free Heterostructures 343</p> <p>References 359</p> <p><b>14 2D-Materials-based Heterostructures for PEC Energy Conversion </b><b>361<br /> </b><i>Bikesh Gupta, Julie Tournet, Hark H. Tan, Chennupati Jagadish, and Siva K. Karuturi</i></p> <p>14.1 Introduction 361</p> <p>14.2 Roles of 2D Materials in Photoelectrochemical Systems 365</p> <p>14.3 Heterostructure Band Energetics at the Interface 367</p> <p>14.4 2D Materials Heterostructures for Photoelectrocatalytic Redox Reactions 369</p> <p>14.5 Challenges and Outlook 380</p> <p>Acknowledgments 380</p> <p>References 381</p> <p><b>15 Polymorphic Phase Engineered Structures (PPES) for PEC Energy Conversion </b><b>389<br /> </b><i>Nasir Uddin and Zongyou Yin</i></p> <p>15.1 Photoelectrochemical (PEC) Energy Conversion 389</p> <p>15.2 PPES for PEC Overall Water Splitting (OWS) 389</p> <p>15.3 PPES for PEC Nitrogen Reduction Reaction 394</p> <p>15.4 Challenge and Opportunity 396</p> <p>References 397</p> <p><b>16 Rare-earth Nanomaterials for PEC Energy Conversion </b><b>399<br /> </b><i>Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du</i></p> <p>16.1 Complex Oxides 399</p> <p>16.2 Ce-Based Photoelectrocatalysts 404</p> <p>16.3 Challenge and Opportunity 409</p> <p>References 409</p> <p><b>17 Non-Noble Plasmon Enhancement (NNPE) for PEC Energy Conversion </b><b>411<br /> </b><i>Sandra Saji and Zongyou Yin</i></p> <p>17.1 NNPE for Water Splitting 411</p> <p>17.2 Challenge and Opportunity 426</p> <p>References 427</p> <p><b>Volume 2</b></p> <p><b>Part IV Emerging Nanomaterials for Photovoltaic (PV) Energy Conversion </b><b>429</b></p> <p><b>18 2D-Materials Free Heterostructures for Photovoltaic Energy Conversion </b><b>431<br /> </b><i>Wei Chen and Guohua Jia</i></p> <p>18.1 2D-Materials Free Heterostructures for Solar Cell 432</p> <p>References 447</p> <p><b>19 2D-Materials-based Heterostructures for PV Energy Conversion </b><b>449<br /> </b><i>Chun H. Mak, Jung-Ho Yun, Hoi Y. Chung, Yun H. Ng, and Hsien-Yi Hsu</i></p> <p>19.1 Introduction to Heterostructured Perovskite Solar Cells 449</p> <p>19.2 Quantum Dot Solar Cells 455</p> <p>19.3 Dye-Sensitized Solar Cells (DSSCs) 461</p> <p>19.4 Challenge and Opportunity 473</p> <p>References 474</p> <p><b>20 Perovskite–Si Tandem Solar Cells </b><b>481<br /> </b><i>Disheng Yao and Hongxia Wang</i></p> <p>20.1 Introduction 481</p> <p>20.2 Perovskite Materials and Solar Cells 484</p> <p>20.3 Tandem Structure of Solar Cells 501</p> <p>20.4 Heterojunctions of Tandem Solar Cells 507</p> <p>20.5 Challenge and Opportunity 520</p> <p>References 523</p> <p><b>21 III–V Compound Semiconductor Nanowire Solar Cells </b><b>531<br /> </b><i>Ziyuan Li, Hark H. Tan, Chennupati Jagadish, and Lan Fu</i></p> <p>21.1 Introduction 531</p> <p>21.2 Nanowire Synthesis 532</p> <p>21.3 Nanowire Design for Optimal Light Absorption 536</p> <p>21.4 Nanowire p–n Junction Design and Characterization 541</p> <p>21.5 Surface Passivation 544</p> <p>21.6 New Concepts and Designs 545</p> <p>21.7 Performance Comparison and Future Perspectives 547</p> <p>21.8 Conclusions 553</p> <p>Acknowledgments 553</p> <p>References 553</p> <p><b>22 Rare-Earth Nanomaterials for PV Energy Conversion </b><b>559<br /> </b><i>Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du</i></p> <p>22.1 Upconversion Phosphors 559</p> <p>22.2 Downconversion Phosphors 569</p> <p>22.3 Challenge and Opportunity 575</p> <p>References 576</p> <p><b>23 Non-noble Plasmon Enhancement (NNPE) for PV Energy Conversion </b><b>581<br /> </b><i>Jung-Ho Yun, Chun Hong Mak, Hsien-Yi Hsu, and Yun Hau Ng</i></p> <p>23.1 Perovskite Solar Cells 581</p> <p>23.2 Quantum Dot Solar Cells 587</p> <p>23.3 Dye-Sensitized Solar Cells 589</p> <p>References 604</p> <p><b>Part V Clusters for Energy Conversion </b><b>611</b></p> <p><b>24 Electrochemical Energy Conversion with Clusters </b><b>613<br /> </b><i>Zhengqing Liu, Sandra E. Saji, and Zongyou Yin</i></p> <p>24.1 Advances of 2D Cluster-Based Electrocatalysts 613</p> <p>24.2 Clusters for EC Water Splitting 613</p> <p>24.3 Clusters for EC CO<sub>2</sub> Reduction Reaction 644</p> <p>24.4 Clusters for Electrochemical N<sub>2</sub> Reduction Reaction (NRR) 648</p> <p>24.5 Challenge and Opportunity 650</p> <p>References 651</p> <p><b>25 Photochemical Energy Conversion with Clusters </b><b>655<br /> </b><i>Xiaoshan Zhang, Sandra E. Saji, and Zongyou Yin</i></p> <p>25.1 Clusters for PC Water Splitting 659</p> <p>25.2 Clusters for PC CO<sub>2</sub> Reduction Reaction 676</p> <p>25.3 Clusters for Photochemical N<sub>2</sub> Reduction Reaction (NRR) 685</p> <p>25.4 Challenge and Opportunity 687</p> <p>References 689</p> <p><b>26 Photoelectrochemical Energy Conversion with Clusters </b><b>695<br /> </b><i>Kaili Liu and Zongyou Yin</i></p> <p>26.1 Introduction 695</p> <p>26.2 Clusters for PEC Water Splitting 697</p> <p>26.3 Clusters for PEC CO<sub>2</sub> Reduction Reaction 708</p> <p>26.4 Challenge and Opportunity 712</p> <p>References 714</p> <p><b>Part VI Single Atoms for Energy Conversion </b><b>719</b></p> <p><b>27 Electrochemical Energy Conversion with Single Atoms </b><b>721<br /> </b><i>Peilong Lu, Sandra E. Saji, Haitao Zhao, and Zongyou Yin</i></p> <p>27.1 Introduction 721</p> <p>References 767</p> <p><b>28 Photochemical Energy Conversion with Single Atoms </b><b>773<br /> </b><i>Haijiao Lu and Zongyou Yin</i></p> <p>28.1 Introduction 773</p> <p>28.2 SAs for Photocatalytic Water Splitting Reaction 775</p> <p>28.3 SAs for Photocatalytic CO<sub>2</sub> Reduction Reaction (CRR) 778</p> <p>28.4 SAs for Photocatalytic N<sub>2</sub> Reduction Reaction (NRR) 780</p> <p>28.5 Challenge and Opportunity 782</p> <p>References 783</p> <p><b>29 Photoelectrochemical (PEC) Energy Conversion with Single Atoms </b><b>787<br /> </b><i>Mahmoud M. Abdelnaby and Zongyou Yin</i></p> <p>29.1 Introduction 787</p> <p>29.2 SAs for PEC Water Splitting 788</p> <p>29.3 SAs for PEC CO<sub>2</sub> Reduction Reaction 798</p> <p>29.4 Challenge and Opportunity 807</p> <p>References 810</p> <p><b>30 Future Perspectives </b><b>815<br /> </b><i>Zongyou Yin</i></p> <p>Index 817</p>
<p><b>Zongyou Yin</b>, PhD, is Associate Professor at the Research School of Chemistry, Australian National University. He received his doctorate from Nanyang Technological University in Singapore in 2008. His research focus encompasses the chemistry and physics of nano-to-atomic materials and their applications development.</p>
<p><b>Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques</b></p> <p>In <i>Atomic and Nano Scale Materials for Advanced Energy Conversion,</i> expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. <p>The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. <p>The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. <p>Readers will also benefit from: <ul><li>A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion</li> <li>An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters</li> <li>Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies</li> <li>A thorough analysis of future perspectives and directions in advanced energy conversion technology</li></ul> <p>Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists,<i> Atomic and Nano Scale Materials for Advanced Energy Conversion</i> is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €